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Problems of diffraction of elastic waves have in recent times attracted more and more 

attention, particularly those related to the interaction of elastic waves with movable 

obstacles. If the obstacle has a polygonal form, the problem reduces to the investigation 

of the diffraction of an incident wave by an infinite wedge. While the wedge problem has 

been studied exhaustively in the case of diffraction of acoustic waves [l, 2 and 31, the 

corresponding problem in the theory of elasticity has, in general, not yet been solved 

analytically if we disregard the special case when the wedge degenerates into a semi- 

infinite cut [4]. 

In the present article another case is investigated, which permits the construction of 

an analytical solution when friction is absent between a rigid wedge and the surrounding 

elastic medium, but the medium nevertheless does not become detached from the wedge, 

i.e. when the normal displacement and the shearing stress disappear on the faces of the 

wedge. Under these conditions the reflection of an incident wave from the face of the 

wedgedoesnot lead to the appearance of waves of different type. That is, in the case of 

an incident longitudinal wave only a longitudinal wave is reflected, and for an incident trans- 

verse wave only a transverse wave is reflected. However, as is known, if the boundary has a 

sharp edge the boundary and initial conditions are by themselves insufficient to guarantee 

uniqueness of solution. An additional condition must be formulated, a so-called ‘edge condi- 

tion’, which is equivalent to the requirement that the law of conservation of energy be satis- 

fied.At it turns out,this last condition cannot be satisfied if the disturbances are limited to 

a single type (longitudinal or transverse). This leads to the occurrence of waves of both types 

diffracted from the edge, despite the absence of two types of reflected waves. This last cir- 

cumstance was not noticed in the paper by Sveklo and Siukiiainen [S] which was devoted to 

the problem considered here. The results obtained in that paper are, therefore, incorrect. 

In spite of the fact that the edge condition does not permit complete reduction to the 

acoustic case, the problem nevertheless turns out to be very similar to the acoustic one, 

which makes it possible to find a closed analytical solution. The similarity of the problem 
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to the acoustic one is, in the end, reflected in the form of the solution for the disturbing 

wave, which is a sum of two solutions. The first of these is simply the solution of the 

corresponding acoustic problem, while the second describes the effect of elasticity. As 

the investigation shows, the latter part of the solution can in no way be neglected in com- 

parison to the acoustic part. Only in one special case, when a plane longitudinal wave is 

incident on the wedge along its bisector, the elastic term is absent and the solution coin- 

cides with the acoustic one. 

1. Formulation of the problem. We shall consider an elastic medium with shear modulus 

~1 and velocities of propagation of longitudinal and transverse waves a and b, repectively. 

The medium occupies the sector r > 0, 0 =? 6 < IC / k and is in contact with a rigid 

wedge (n / k < 6 < an), the boundary condition having the form 

z++ = 0, %a = 0 for 6 = 0, n: J k, 0 < r < 00 (1.1) 

where r and 8 are cylindrical coordinates. Without loss of generality it is possible to 

consider k < 1, since the case k > 1 can be obtained from the former one with the aid of a 

reflection transformation. For if we take the solution for k < 1 and separate out the part 

which is antisymmetric with respect to the bisector of the wedge, this latter part is the 

solution for k’ = 2k 2 1. 

If we introduce longitudinal and transverse potentials which are related to the dis- 

placement components by the relations 

then the boundary conditions (1.1) will be satisfied if we require that 

arp / a6 = 0, lp=o for 6 = 0, nlk 

(1.2) 

(1.3) 

The boundary conditions are thus set up independently for the longitudinal and trans- 

verse potentials. This allows us to find the potentials independently until the edge condi- 

tion is taken into account. 

As the edge condition,we require that for k < 1 the displacements be bounded and the 

stresses and strains grow more slowly than r -t, or in other words, 

u = 0 (9) + const, a>0 as r-+0 (1.4) 

We shall consider that the potential of the incident wave is described by the Heaviside 

step function H (fl, i.e. it is equal to zero before the front and to unity behind it. Use of the 

Duhamel integral leads us to the case of a general plane incident wave. We shall split the 

unknown longitudinal and transverse potentials into two terms. The first of these will dea- 

tribe the incident wave. The second will represent the disturbance caused by the presence 

of the wedge and will contain the reflected and diffracted waves. We thus write 

for a longitudinal incident wave 

(1.5) 

for a transverse incident wave 
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(1.6) 

The potentials ‘pr and $t describing the disturbance must, of eouse, satisfy homogene- 

ous initial conditions and the boundary conditions which follow from Eq. (1.31, i.e. the 

conditions for an incident longitudinal wave 

8% 
7gj-=sin(B --&J)~(~~COS@--&J)), Wl 

~=0 for 6==0, z/k (1.7) 

for a transverse incident wave 

atpl 
aa -O* 

a*1 cos (19 - 6,) s bt _I_- ar-- r (7 a cc@ (6 - 60,) (1.8) 

where 6 (7) is the Dirac delta function. 

FIG. 1 FIG. 2 

FIG. 3 FIG. 4 

The reflected and diffracted wave fronts are shown in Fig. 1 for the case of a longi- 

tudinal incident wave and in Fig. 2 for the case of a transverse incident wave, under the 

conditions that no shadow zone is formed. The cases where shadows are formed are shown 

in Figs. 3 and 4. We note that the sign of the potential of the reflected longitudinal wave 

coincides with the sign of the potential of the incident longitudinal wave (i.e. the reflection 

coefficient is equal to unity.) However, the potential of the reflected transverse wave has 

a sign opposite to that of the incident transverse wave (the reflection coefficient is equal 

to -1.) 

The boundary and initial conditions are such that the solution which is sought must 

be homogeneous and of degree zero in r and t. This allows us to make use of the method 

of functionally invariant solutions of Smirnov and Sobolev [I]. Pursuing this method, we 

introduce the variables 
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z1 =comhk (xl -j- is), z2 =conhk (x2 + in?) 
at bt 

(1.0) 

The region of the longitudinal disturbance is mapped into the upper half-plane of the 

complex variable zt in the following way: the sector 0 f 6 < II / k, t.l < p < al is mapped 

into the upper half-plane, the radii 8 = 0 and 8 = n/k being transformed into the segments 

(1, m) and (- m , -1) of the real axis. The arc of the circle r = or (the front of the diffracted 

longitudinal wave), is transformed into the segment (-1, 1) of the real axis. The exterior 

of this sector (that part of it where longitudinal disturbances are possible) is also mapped 

onto the segment (-1, 1). The region of transverse disturbances is mapped onto the upper 

half-plane of the variable z, in exactly the same way. 

The potentials ‘pr and I$~ can now be sought in the form Yr = Re Ct, (zr), +r = Re Y (zr)- 

where @ (zr) and ‘Y (2,) are analytic functions of zt and zr which are regular in the upper 

half-plane and satisfy on the real axis conditions which follow from the boundary condi- 

tions (1.7) or (1.8). 

2. A longitudinal incident wave. From (1.7) it can be shown tnat 

Re [i 1/zP - 1 CD’ (~$1 = 0, lm zr = + 0 
(2.1) 

and that at the points zr = cos k (6, - n) and ~1 = cos k (60 + n) the function (P’(zJ 

must have simple poles with residues equal to two in absolute value. The sign of the 

residue depends on the angle of incidence and, as can be verified, must agree with the 

sign of sin k (8, - rt) at the pole zr = cos k (&I-- n) and be opposite to the sign of 

sin k (60+fi) at the pole rr = Cos k (80 i- n). We choose the branch of the radical 

(r,l - 1) v, which is equal to + i for zr = 0. The solution of the boundary value problem 

(2.1) can then be written in the form 

CD’ (Zl) = II v& [Al (zl) sin (30 - a) k (zl- cos (6, - n) k)-1 - 
(2.2) 

- Aa (~1) sin (30 + a’t) k (zl - cos (8, + TC) k)-11 

where Al and A, are polynomials of degree n, which satisfy the conditions 

A, (cos (3, - n: k) = A, (cos (3, + n) k)= 1 (2.3) 

Taking into consideration that zr=O(~-~) as t + 0, we may conclude from the above 

that the displacement components are of the order 

r[(i-u,Pl--t as r+O 

That is, they are not bounded, even when n = 0, and the edge condition (1.4) cannot be 

satisfied by a single longitudinal potential. 

In order to satisfy the edge condition (1.4) we shall try to find a transverse potential 

v which will cancel the displacement singularity corresponding to the longitudinal 

potential (2.2). It follows from Eqs. (1.7) that 

Re Y’ (zr) = 0 for lm zr = 0 
(2.4) 

where v’(z,) is regular throughout the upper half-plane, including the real axis. From 

this it follows that 
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Y’ (z& = in (z2) (2.5) 

where B is a polynomial of degree IQ having real coefficients. The corresponding displace- 

ment are of the order 

t-f(u,+l)kl -1 as r-0 

In order that the singularity at the edge be annulled, we must have nr - 1 = nz + 1 

or ns = n, - 2. ft can be verified that the edge condition can be satisfied only for 

nz = 0 and n, = 2. Equations (2.2) and (2.5) can now be presented in the form 

al’ (ZI) = 
1 

ax Jfz,a- 1 
[(z1- cos (60 - 31) k)-l sin (& - n) k - 

(2.6) 
- (zt - co8 ((to + R) k)-lsin (% + n) k + c/z1 + p], Y’ (21) = + y 

We find the expressions for the displacemente from (1.2) and (2.6) 

-k 
l&a=- -gy Im (zr - cos k (6, - n))-1 sin k (6,~ - n) - 

- (21 - co9 k (60 + W1 sin k 0% + n) + azl + P + 

btr 1/z2 - 1 
v/ba22_ 

3 

-k 
UP--~ Re cos k (Qe - a~))-‘sin k (% - A) - 

(2.7) 

- (zl- co8 k (%I + n))-l sin k (&I -I- 56 + azl+ p)] + 7 vzz2 - I} 

The real constants a, /?, and y in Eqs. (2.6) and (2.7) are determined from the edge 
condition. Using Eqs. (1.9) it is easy to find the leading terms of the asymptotic expansions 
of Eqs. (2.7) aa r + 0 

..=~{~o~ke[~k4(~fk-b”~i”-jb+ 

$ CZ-~ (bin k(& - n) - ~ink(80+rr)+q)(~~-b-kg(~j6]+~}+o(l) 

It is clear from this that it is necessary to put 

B = 0, oka + 6% = 0, a--k f4 sin k (8, - n) i 4 sin k (6,+ n)] + .-kce--b-kr=o 

in order to satisfy the edge condition. 

Now instead of (2.6) we obtain 

CD’ (Zr) = 
x J& {(z1- cos k (&, - IX))’ sin k (6~ - n) - 

- (21 - cos k (60 $ a))-l sin k (&, + n) + 8 [1 + ($)2kl-1sin xk cos kf3,gl} (2Sa) 

Y (zp) = - 8i[($)ki- (%)k]-1sinnkcos60k 
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Inte~ating and changing over to the physical variables, we obtain 

f$=(Pa(r,fF, 1)+~[1+($)2k]~1sinnhcos60~cos~o~[P(a~/r)- P(a:, r,1 

*=$(_;jk[*+(+)“l~ 
1 (2.9) 

sin nk cos @ok sin 6k P (bt / r) - p (bt i rj J 1 

where ‘Pa is the solution of the acoustic problem with the boundary condition %, 130 --_ 0, 

and the function P (~1 is equal to 

P (7) = (z + J@=Tjk (2.10) 

It is clear from these equations, that the corrections to the acoustic solution dis- 
appear on the fronts of the diffracted waves, whidh is quite natural sinct they are not 
related to the waves reflected from the faces of the wedge. It is also easy to see that 
these corrections satisfy homogeneous initial and boundary conditions. The solution ob- 
tained coincides with the acoustic one if the incident ray is directed along the bisector 
of the wedge (6, = 3t / (2 k)), since in this case cos k@,= 0, and both corrections vanish 
identically. For this vaIue of the angle of incidence the acoustic solution satisfies the 
edge condition (1.4) by itself. 

3. A transverse incident wave. If a transverse wave is incident, the conditions (2.1) 

and (2.4) remain valid, but now @‘(x1) must be regular in the half-plane including the real 
axis and %“(z,) must have simple poles at the paints 2, = COB k (@o - SI) and 
z2 =L. cos k (&I -/- r~) with residues equal to f 2 respectively. Proceeding in a manner 
analogous to that described in the previous section, we find 

(3.1) 

+ 8 [ I+ (%)e’]-l sin nk sin @ok} 

We obtain from this the expressions for the potentials in the physical variables 

cp =$[(;)“($)“]” sin nk sin 60k co8 6k P (at / r) - p (a:/ rj 1 
,=,.++[~+(;)““]-’ 

(3.2) 

sin nksin 6dcainfNc P (bt / r) - p (bi, rJ 1 
where $, is again the solution of the corresponding acoustic problem ($a = 0 at the facces 

of the wedge). In the present case there exists no value of the angle of incidence for which 
the solution coincides with the acoustic one, since sin kg0 vanishes only for I$, = 0 or 
n/k, i.e. when the incident ray grazes one face of the wedge. However, this is not possible, 
since in this case the reflected wave cancels the incident wave. 

4. Behavior 01 the diffmcted wave near their Imats. By the use of Equations (1.21, 
(1.91, (1.10) and (2.8) with (3.1) it ia easy to compute asymptotic expressiona for the dis- 
placements near the fronts of the diffracted waves (but not near points of contact of these 
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fronts with the fronts of the reflected or incident waves.) 

We introduce the variables 

which represent the distances from the longitudinal and transverse wave fronts, respectively. 

Then for a longitudinal incident wave, we have 

for T1 + 0 

ug = 0 (I), 

(4.2) 
-k 

up z 
nr JfK 

[COS k6 -COS k (190 - n)]-rain k (f& - n) - 

- [cos 6k - cos k (& + a-c)]?sin k (80+ n) f 8 [I •J- (~)k]-lsin kxcosktkos6k)+O(l) 

for 7a -+ 0 (i.e. near the front of the transverse wave) 

!Ip = 0 (I), 248 = gk_ ($)o[l$- (+)y-l 
rcr V2Q 

sin nk co8 60k sin 6k -/- 0 (1) (4.3) 

Analogous expressions can also be obtained for the case of a transverse incident 

wave. 

In particular, it is clear from these expressions that the additional elastic terms 

have the same intensity as the acoustic terms near the front, but a different angular dis- 

tribution. Thus the difference between the elastic problem and the acoustic problem is 

important, not only near the edge, of the wedge but also in the entire region of diffraction. 
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2. 

3. 
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